

[]

T

 \bigcirc

 \bigcirc

 \bigcirc

گروه فنی مهندسی جوش و برش مقدم

اعتماد از شما کیفیت و تخصص از ما

09153223758 051-37581400 https://www.moghadamwelding http://instagram.com/moghadam https://t.me/moghadamwelding https://whatsapp.com/channel https://rubika.ir/moghadamwelding

مشهد خیام شمالی 63 خیابان پردیس 3

برای کسب اطلاعات بیشتر بر روی لینک ها کلیک کنید

 7 سال سابقه آموزش تعمیرات تخصصی دستگاه های جوش اینورتری تک فاز و 3 فاز

- 7 سال سابقه فروش قطعات الکترونیکی دستگاه جوش
 تک فاز و 3 فاز
- آموزش تخصصی تحلیل دستگاه های جوش اینورتری مختص ابراز فروشان
 - آموزش تخصصی ابراز آلات شارژی

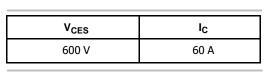
IGBT - Field Stop 600 V, 60 A

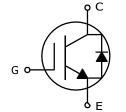
FGH60N60SMD

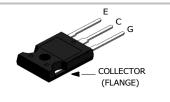
Description

Using novel field stop IGBT technology, ON Semiconductor's newseries of field stop 2nd generation IGBTs offer the optimum

www.onsemi.com

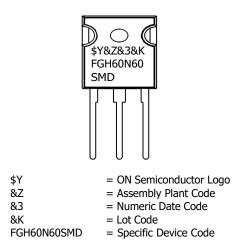

performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.


Features


- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.9 \text{ V} (Typ.) @ I_C = 60 \text{ A}$
- High Input Impedance
- Fast Switching: E_{OFF} = 7.5 uJ/A
- Tightened Parameter Distribution
- This Device is Pb-Free and is RoHS Compliant

Applications

• Solar Inverter, UPS, Welder, PFC, Telecom, ESS



TO-247-3LD CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Descript	ion	Ratings	Unit
V _{CES}	Collector to Emitter Voltage	ector to Emitter Voltage		V
V _{GES}	Gate to Emitter Voltage		±20	V
	Transient Gate to Emitter Voltage		±30	V
IC	Collector Current	T _C = 25°C	120	А
		T _C = 100°C	60	А
ICM (Note 1)	Pulsed Collector Current		180	А
IF	Diode Forward Current	T _C = 25°C	60	А
		T _C = 100°C	30	А
I _{FM} (Note 1)	Pulsed Diode Maximum Forward Currer	nt	180	А
PD	Maximum Power Dissipation	T _C = 25°C	600	W
		T _C = 100°C	300	W
Tj	Operating Junction Temperature		–55 to +175	°C
T _{STG}	Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temp. for Soldering Purpo	oses, 1/8" from Case for 5 Seconds	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: Pulse width limited by max. junction temperature.

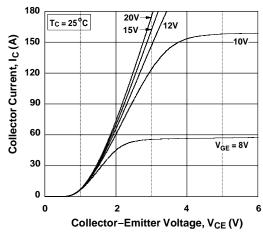
THERMAL CHARACTERISTICS

Symbol	Parameter	Тур.	Max.	Unit
R _{0JC} (IGBT)	Thermal Resistance, Junction to Case	-	0.25	°C/W
R _{0JC} (Diode)	Thermal Resistance, Junction to Case	-	1.1	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient	-	40	°C/W

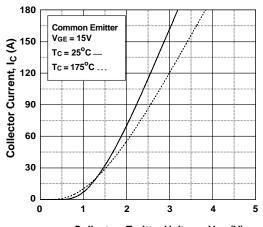
PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Qty per Tube
FGH60N60SMD	FGH60N60SMD	TO-247	Tube	N/A	N/A	30

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHARACT	ERISTICS					
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0 V, I_C = 250 \mu A$	600	-	-	V
$\Delta BV_{CES} / \Delta T_J$	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0 V, I_C = 250 \mu A$	-	0.6	-	V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
ON CHARACTE	ERISTICS					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 250 \ \mu A$, $V_{CE} = V_{GE}$	3.5	4.5	6.0	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V},$	-	1.9	2.5	V
		$ I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V}, \\ T_{C} = 175^{\circ}\text{C} $	_	2.1	_	v
OYNAMIC CHA	RACTERISTICS			.		
Cies	Input Capacitance	$V_{CE} = 30 V, V_{GE} = 0 V,$	-	2915	-	pF
Coes	Output Capacitance	f = 1 MHz	-	270	-	pF
C _{res}	Reverse Transfer Capacitance	1	-	85	-	pF
WITCHING CH	IARACTERISTICS					
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 V, I_C = 60 A,$	-	18	27	ns
Tr	Rise Time	$R_G = 3 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	-	47	70	ns
T _{d(off)}	Turn–Off Delay Time	1	-	104	146	ns
T _f	Fall Time		-	50	68	ns
Eon	Turn-On Switching Loss		-	1.26	1.94	mJ
E _{off}	Turn–Off Switching Loss		-	0.45	0.6	mJ
E _{ts}	Total Switching Loss		-	1.71	2.54	mJ
T _{d(on)}	Turn–On Delay Time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 60 \text{ A}, R_{G} = 3 \Omega, V_{GE} = 15 \text{ V},$	-	18	-	ns
Tr	Rise Time	Inductive Load, $T_C = 17^\circ C$	-	41	-	ns
T _{d(off)}	Turn–Off Delay Time		-	115	-	ns
T _f	Fall Time	-	-	48	-	ns
Eon	Turn–On Switching Loss		-	2.1	-	mJ
E _{off}	Turn–Off Switching Loss		-	0.78	-	mJ
E _{ts}	Total Switching Loss		-	2.88	-	mJ
Qg	Total Gate Charge	$V_{CE} = 400 \text{ V}, \text{ I}_{C} = 60 \text{ A},$	-	189	284	nC
Q _{ge}	Gate to Emitter Charge	$V_{GE} = 15 V$	-	20	30	nC
Q _{gc}	Gate to Collector Charge	1	-	91	137	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


Symbol	Parameter	Test Co	nditions	Min Typ		Max	Unit
V _{FM}	Diode Forward Voltage	I _F = 30 A	T _C = 25°C	-	2.1	2.7	V
			T _C = 175°C	-	1.7	-	
E _{rec}	Reverse Recovery Energy	I _F = 30 A, di _F /dt = 200 A/µs	T _C = 175°C	-	79	-	uЈ
T _{rr}	Diode Reverse Recovery Time		T _C = 25°C	-	30	39	ns
			T _C = 175°C	-	72	-	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	44	62	nC
			T _C = 175°C	-	238	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 1. Typical Output Characteristics

Collector-Emitter Voltage, V_{CE} (V)

Figure 3. Typical Saturation Voltage Characteristics

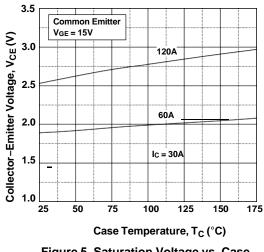
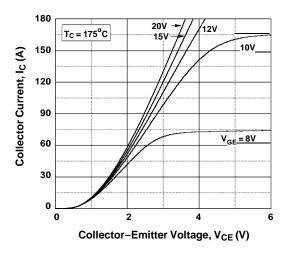
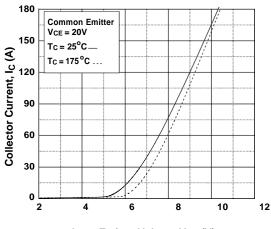




Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

Gate-Emitter Voltage, V_{GE} (V)

Figure 4. Transfer Characteristics

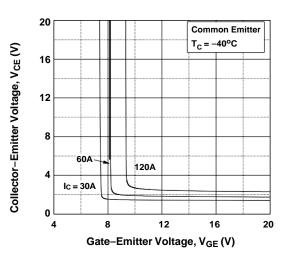


Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

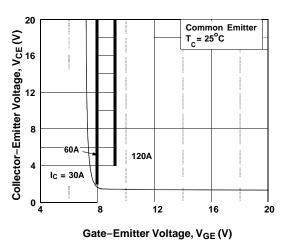


Figure 7. Saturation Voltage vs. V_{GE}

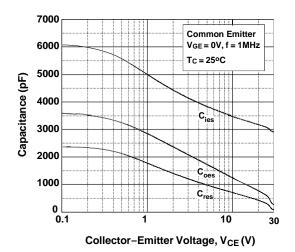


Figure 9. Capacitance Characteristics

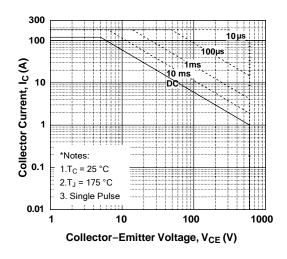
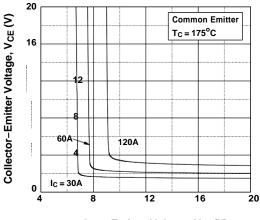
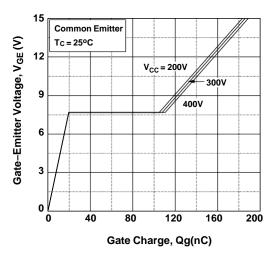
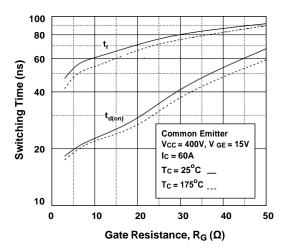
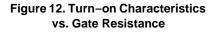
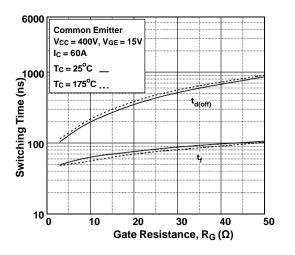
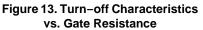



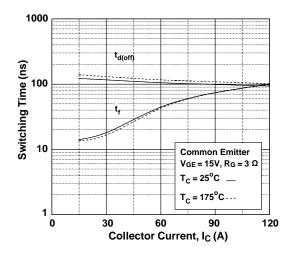
Figure 11. SOA Characteristics

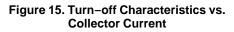
Gate-Emitter Voltage, V_{GE}(V)

Figure 8. Saturation Voltage vs. V_{GE}


Figure 10. Gate Charge Characteristics





TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

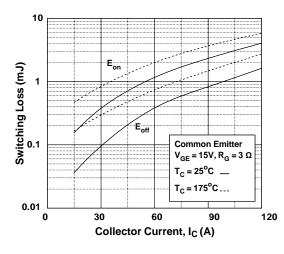


Figure 17. Switching Loss vs. Collector Current

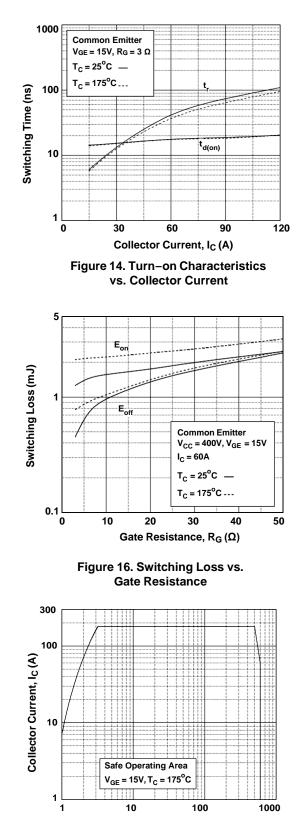
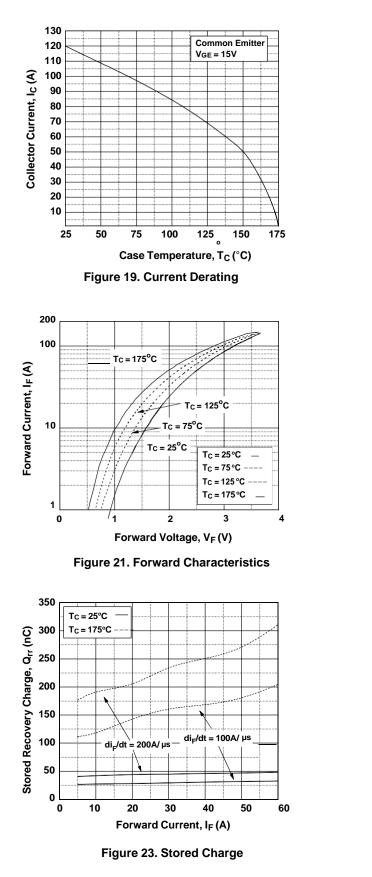



Figure 18. Turn Off Switching SOA Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

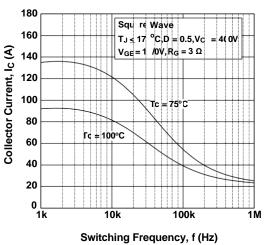
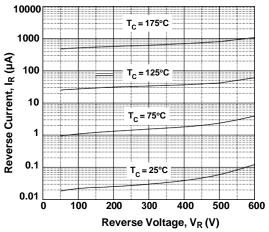



Figure 20. Load Current vs. Frequency

Figure 22. Reverse Current

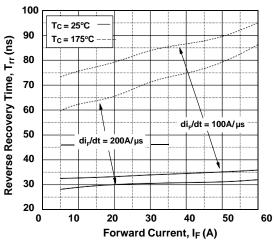


Figure 24. Reverse Recovery Time

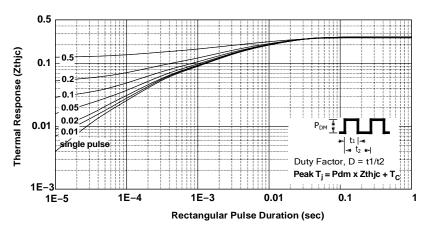


Figure 25. Transient Thermal Impedance of IGBT

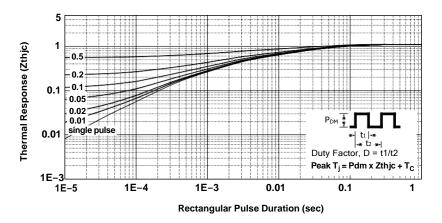
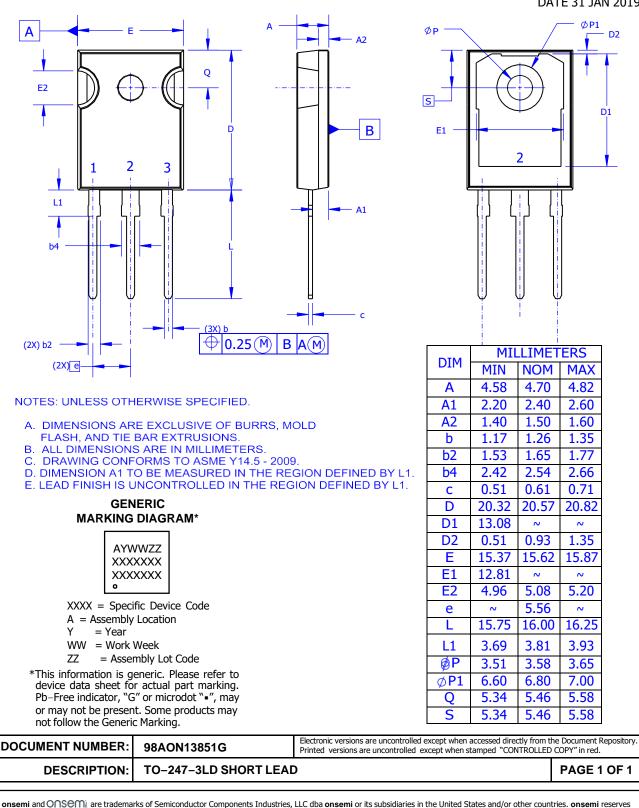



Figure 26. Transient Thermal Impedance of Diode

TO-247-3LD SHORT LEAD CASE 340CK **ISSUE A**

DATE 31 JAN 2019

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affi

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: <u>www.onsemi.com/design/resources/technical-documentation</u> onsemi Website: <u>www.onsemi.com</u> ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales