گروه فنی مهندسی جوش و برش مقدم

T

0

 \bigcirc

 \bigcirc

اعتماد از شما کیفیت و تخصص از ما

09153223758 051-37581400 https://www.moghadamwelding http://instagram.com/moghadam https://t.me/moghadamwelding https://whatsapp.com/channel https://rubika.ir/moghadamwelding

مشهد خیام شمالی 63 خیابان پردیس 3

برای کسب اطلاعات بیشتر بر روی لینک ها کلیک کنید

- 7 سال سابقه آموزش تعمیرات تخصصی دستگاه های جوش اینورتری تک فاز و 3 فاز
- 7 سال سابقه فروش قطعات الکترونیکی دستگاه جوش
 تک فاز و 3 فاز
- آموزش تخصصی تحلیل دستگاه های جوش اینورتری مختص ابراز فروشان
 - آموزش تخصصی ابراز آلات شارژی

National Semiconductor

September 1996

LM2576/LM2576HV Series SIMPLE SWITCHER 3A Step-Down Voltage Regulator

General Description

The LM2576 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. These devices are available in fixed output voltages of 3.3V, 5V, 12V, 15V, and an adjustable output version.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The LM2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required.

A standard series of inductors optimized for use with the LM2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies.

Other features include a guaranteed g4% tolerance on output voltage within specified input voltages and output load conditions, and g10% on the oscillator frequency. External shutdown is included, featuring 50 mA (typical) standby current. The output switch includes cycle-by-cycle current limit-

- v 3.3V, 5V, 12V, 15V, and adjustable output versions
- Y Adjustable version output voltage range,
- 1.23V to 37V (57V for HV version) ${\rm g}4\%$ max over line and load conditions
- Y Guaranteed 3A output current
- Y Wide input voltage range, 40V up to 60V for HV version
- Y Requires only 4 external components
- Y 52 kHz fixed frequency internal oscillator
- Y TTL shutdown capability, low power standby mode
- Y High efficiency
- Y Uses readily available standard inductors
- Y Thermal shutdown and current limit protection
- Y Pa Product Enhancement tested

Applications

- Y Simple high-efficiency step-down (buck) regulator
- Y Efficient pre-regulator for linear regulators
- Y On-card switching regulators
- Y Positive to negative converter (Buck-Boost)

TL/H/11476-1

FIGURE 1

C1996 National Semiconductor Corporation TL/H/11476

RRD-B30M106/Printed in U. S. A.

Absolute Maximum F	Ratings (Note 1)		
If Military/Aerospace specified	devices are required, Semiconductor Sales	Minimum ESD Rating (Ce 100 nE Be 1.5 kX)	2 kV
Office/Distributors for availabilit	ty and specifications.	Lead Temperature	
Maximum Supply Voltage		(Soldering, 10 Seconds)	260°C
LM2576 LM2576HV	45V 63V	Maximum Junction Temperature	150°C
ON/OFF Pin Input Voltage	$b_{0.3V} \le V \le a_{VN}$	Operating Ratings	
Output Voltage to Ground		Temperature Range	
(Steady State)	Ъ 1V	LM2576/LM2576HV	b40°CsTjsa125°C
Power Dissipation	Internally Limited	Supply Voltage	
Storage Temperature Range	▶65°C to ☎150°C	LM2576	40V
		LM2576HV	60V

LM2576-3.3, LM2576HV-3.3

Electrical Characteristics Specifications with standard type face are for T_J \cong 25°C, and those with boldface type apply over full Operating Temperature Range.

Symbol	Doromotor	Conditions	LM2576-3.3 LM2576HV-3.3	Units		
Symbol	Faianletei	Conditions	Тур	Limit (Note 2)	(Limits)	
SYSTEM PARA	METERS (Note 3) Tes	st Circuit Figure 2				
V _{OUT}	Output Voltage	VIN ^e 12V, I _{LOAD} ^e 0.5A Circuit of <i>Figure 2</i>	3.3	3.234 3.366	V V(Min) V(Max)	
V _{OUT}	Output Voltage LM2576	$6V \approx V_{IN} \approx 40V$, 0.5A $\approx I_{LOAD} \approx 3A$ Circuit of <i>Figure 2</i>	3.3	3.168/3.135 3.432/3.465	V V(Min) V(Max)	
V _{OUT}	Output Voltage LM2576HV	6V s V _{IN} s 60V, 0.5A s I _{LOAD} s 3A Circuit of <i>Figure 2</i>	3.3	3.168/3.135 3.450/3.482	V V(Min) V(Max)	
h	Efficiency	V _{IN} e 12V, I _{LOAD} e 3A	75		%	

LM2576-5.0, LM2576HV-5.0

Electrical Characteristics Specifications with standard type face are for T_J \cong 25°C, and those with boldface type apply over full Operating Temperature Range.

Devementer	Conditions	LM2	M2576-5.0 2576HV-5.0	Units
Parameter Conditions	Conditions	Тур	Limit (Note 2)	(Limits)
IETERS (Note 3) Test C	ircuit Figure 2			
Output Voltage	V _{IN} e 12V, I _{LOAD} e 0.5A Circuit of <i>Figur</i> e 2	5.0	4.900 5.100	V V(Min) V(Max)
Output Voltage LM2576	0.5A s I _{LOAD} s 3A, 8V s VIN s 40V Circuit of <i>Figure 2</i>	5.0	4.800/4.750 5.200/5.250	V V(Min) V(Max)
Output Voltage LM2576HV	0.5A s I _{LOAD} s 3A, 8V s V _{IN} s 60V Circuit of <i>Figure 2</i>	5.0	4.800/4.750 5.225/5.275	V V(Min) V(Max)
Efficiency	V _{IN} e 12V, I _{LOAD} e 3A	77		%
	Parameter ETERS (Note 3) Test C Output Voltage LM2576 Output Voltage LM2576HV Efficiency	ParameterConditionsETERS (Note 3) Test Circuit Figure 2Output VoltageVIN e 12V, ILOAD e 0.5A Circuit of Figure 2Output Voltage0.5A s ILOAD s 3A, 8V s VIN s 40V Circuit of Figure 2Output Voltage0.5A s ILOAD s 3A, 8V s VIN s 40V Circuit of Figure 2Output Voltage0.5A s ILOAD s 3A, 8V s VIN s 60V Circuit of Figure 2EfficiencyVIN e 12V, ILOAD e 3A	ParameterConditionsLt LMXConditionsETERS (Note 3) Test Circuit Figure 2Output Voltage $V_{IN} e 12V, I_{LOAD} e 0.5A$ Circuit of Figure 25.0Output Voltage $0.5A \le I_{LOAD} \le 3A,$ $8V \le VIN \le 40V$ Circuit of Figure 25.0Output Voltage $0.5A \le I_{LOAD} \le 3A,$ $8V \le VIN \le 60V$ Circuit of Figure 25.0Output Voltage LM2576HV $0.5A \le I_{LOAD} \le 3A,$ $8V \le VIN \le 60V$ Circuit of Figure 25.0Efficiency $V_{IN} e 12V, I_{LOAD} e 3A$ 77	ParameterConditionsLM2576+5.0 LM2576HV-5.0TypLimit (Note 2)ETERS (Note 3) Test Circuit Figure 2Output Voltage $V_{IN} e 12V$, $I_{LOAD} e 0.5A$ Circuit of Figure 2 5.0 4.900 5.100Output Voltage $0.5A s I_{LOAD} s 3A$, $8V s VIN s 40V$ Circuit of Figure 2 5.0 $4.800/4.750$ 5.200/5.250Output Voltage LM2576HV $0.5A s I_{LOAD} s 3A$, $8V s VIN s 40V$ Circuit of Figure 2 5.0 $4.800/4.750$ 5.200/5.250Output Voltage LM2576HV $0.5A s I_{LOAD} s 3A$, $8V s VIN s 60V$ Circuit of Figure 2 5.0 $4.800/4.750$ 5.225/5.275Efficiency $V_{IN} e 12V$, $I_{LOAD} e 3A$ 77

			LN	A2576-12		
Symbol	Parameter	Conditions	LM2	2576HV-12	Units (Limits)	
			Тур	(Note 2)	(Linito)	
STEM PAR	AMETERS (Note 3) Test	Circuit Figure 2				
V _{OUT}	Output Voltage	V _{IN} e 25V, I _{LOAD} e 0.5A Circuit of <i>Figure</i> 2	12	11.76 12.24	V V(Min) V(Max)	
V _{OUT}	Output Voltage LM2576	0.5A ^s I _{LOAD} ^s 3A, 15V ^s V _{IN} ^s 40V Circuit of <i>Figure</i> 2	12	11.52/11.40 12.48/12.60	V V(Min) V(Max)	
V _{OUT}	Output Voltage LM2576HV	0.5A ^s I _{LOAD} ^s 3A, 15V ^s V _{IN} ^s 60V Circuit of <i>Figure 2</i>	12	11.52/11.40 12.54/12.66	V V(Min) V(Max)	
h	Efficiency	V _{IN} e 15V, I _{LOAD} e 3A	88		%	
Symbol	Parameter	Conditions	LM2 Tvp	Limit	Units (Limits)	
Symbol	Parameter	Conditions	LM2	2576HV-15	Units (Limite)	
			тур	(Note 2)		
	Output Voltage		15		V	
		Circuit of Figure 2		14.70 15.30	V(Min) V(Max)	
V _{OUT}	Output Voltage LM2576	0.5A s I _{LOAD} s 3A, 18V s V _{IN} s 40V Circuit of <i>Figure</i> 2	15	14.40/14.25 15.60/15.75	V V(Min) V(Max)	
V _{OUT}	Output Voltage LM2576HV	0.5A s I _{LOAD} s 3A, 18V s V _{IN} s 60V Circuit of <i>Figure 2</i>	15	14.40/14.25 15.68/15.83	V V(Min) V(Max)	
h	Efficiency	V _{IN} e 18V, I _{LOAD} e 3A	88		%	
LM2576 Electric type apply Symbol	6-ADJ, LM2576I cal Characteris over full Operating Tem Parameter	HV-ADJ tiCS Specifications with standard type fa perature Range.	ace are for T,	ງ C 25°C, and those with LM2576-ADJ LM2576HV-ADJ	boldface Units	
-,			Тур	Limit (Note 2)	(Limit	
STEM PAR	AMETERS (Note 3) Test	Circuit Figure 2				
V _{OUT}	Feedback Voltage	VIN ^e 12V, I _{LOAD} ^e 0.5A V _{OUT} ^e 5V, Circuit of <i>Figure</i> 2	1.230) 1.217 1.243	V V(Min V(Max	
V _{OUT}	Feedback Voltage LM2576	0.5A ≈ I _{LOAD} ≈ 3A, 8V ≈ V _{IN} ≈ 40V V _{OUT} ∘ 5V, Circuit of <i>Figur</i> e 2	1.230) 1.193/1.180 1.267/1.280	V V(Min V(Max	
	Feedback Voltage	0.5A s I _{LOAD} s 3A, 8V s V _{IN} s 60V	1.230	1.193/1.180	V V(Min	
V _{OUT}	2207 0111	VOUT ^e 5V, Circuit of Figure 2		1.273/1.200	v(iviax	

All Output Voltage Versions Electrical Characteristics Specifications with standard type face are for TJ e 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, VIN e 12V for the 3.3V, 5V, and Adjustable version, VIN e 25V for the 12V version, and VIN e 30V for the 15V version. ILOAD e 500 mA LM2576-XX LM2576HV-XX Units Parameter Conditions Symbol (Limits) Limit Typ (Note 2) **DEVICE PARAMETERS** VOUT e 5V (Adjustable Version Only) 100/500 Feedback Bias Current 50 nA lь **Oscillator Frequency** (Note 11) 52 kHz fo 47/42 kHz (Min) 58/63 kHz (Max) IOUT e 3A (Note 4) VSAT Saturation Voltage 1.4 v 1.8/2.0 V(Max) DC Max Duty Cycle (ON) 98 (Note 5) % 93 %(Min) I_{CL} Current Limit (Notes 4 and 11) 5.8 4.2/3.5 A(Min) 6.9/7.5 A(Max) mA(Max) ١L **Output Leakage Current** (Notes 6 and 7) Output e 0V 2 Output e b1V 75 mΑ Output e b1V 30 mA(Max) lQ Quiescent Current (Note 6) 5 mΑ 10 mA(Max) Standby Quiescent 50 ISTBY mΑ ON/OFF Pin e 5V (OFF) Current 200 mA(Max) Thermal Resistance İJΑ T Package, Junction to Ambient (Note 8) 65 İJΑ 45 °C/W T Package, Junction to Ambient (Note 9) ∎JC T Package, Junction to Case 2 IJA S Package, Junction to Ambient (Note 10) 50 ON/OFF CONTROL Test Circuit Figure 2 VOUT e OV <u>V_{IH}</u> 1.4 2.2/2.4 V(Min) ON/OFF Pin VIL Logic Input Level VOUT e Nominal Output Voltage 1.0/0.8 1.2 V(Max) Ι_Η **ON/OFF** Pin Input 12 mΑ ON/OFF Pin e 5V (OFF) 30 mA(Max) Current I_{IL} 0 mΑ ON/OFF Pin e 0V (ON) 10 mA(Max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are quaranteed via correlation using standard Statistical Quality Control (SQC) methods.

Note 3: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2576/LM2576HV is used as shown in the *Figure 2* test circuit, system performance will be as shown in system parameters section of Electrical Characteristics. Note 4: Output pin sourcing current. No diode, inductor or capacitor connected to output.

Note 5: Feedback pin removed from output and connected to 0V.

Note 6: Feedback pin removed from output and connected to a 12V for the Adjustable, 3.3V, and 5V versions, and a 25V for the 12V and 15V versions, to force the output transistor OFF.

Note 7: $V_{IN} \ensuremath{\,^{e}}$ 40V (60V for high voltage version).

Note 8: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with 1/3 inch leads in a socket, or on a PC board with minimum copper area.

Note 9: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with 1/4 inch leads soldered to a PC board containing approximately 4 square inches of copper area surrounding the leads.

Note 10: If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package. Using 0.5 square inches of copper area, *i*_JA is 50°C/W, with 1 square inch of copper area, *i*_JA is 37°C/W, and with 1.6 or more square inches of copper area, *i*_JA is 32°C/W.

Note 11: The oscillator frequency reduces to approximately 11 kHz in the event of an output short or an overload which causes the regulated output voltage to drop approximately 40% from the nominal output voltage. This self protection feature lowers the average power dissipation of the IC by lowering the minimum duty cycle from 5% down to approximately 2%.

PROCEDURE (Fixed Output V	oltage Versions)		EXAMPLE (Fixed Output Voltage Versions)
Given:		Give	en:
 V_{OUT} e Regulated Output Voltage V_{IN}(Max) e Maximum Input Volta I_{LOAD}(Max) e Maximum Load Cur Inductor Selection (L1) A. Select the correct Inductor value <i>Figures 3, 4, 5, or 6 .</i> (Output volta 15V respectively). For other output design procedure for the adjustabl B. From the inductor value selectic inductance region intersected by V I_{LOAD}(Max), and note the inductor C. Identify the inductor value from select an appropriate inductor from <i>Figure 3 .</i> Part numbers are listed manufacturers. The inductor c I_{LOAD} inductor information, see the inductor 	(3.3V, 5V, 12V, or 15V) age rent e selection guide from ges of 3.3V, 5V, 12V or t voltages, see the e version. on guide, identify the /IN(Max) and code for that region. the inductor code, and n the table shown in for three inductor en must be rated for frequency (52 kHz) and b. For additional ctor section in the	1.	V _{OUT} e 5V V _{IN} (Max) e 15V I _{LOAD} (Max) e 3A Inductor Selection (L1) A. Use the selection guide shown in <i>Figure 4</i> . B. From the selection guide, the inductance area intersected by the 15V line and 3A line is L100. C. Inductor value required is 100 mH. From the table in <i>Figure 3</i> . Choose AIE 415-0930, Pulse Engineering PE92108, or Renco RL2444.
 Application Hints section of this da Output Capacitor Selection (Cot A. The value of the output capacit inductor defines the dominate pole regulator loop. For stable operatio output ripple voltage, (approximativ voltage) a value between 100 mF recommended. 	ita sheet. JT) or together with the pair of the switching n and an acceptable ely 1% of the output and 470 mF is	2.	Output Capacitor Selection (C _{OUT}) A. C _{OUT} e 680 mF to 2000 mF standard aluminum electrolytic. B. Capacitor voltage rating e 20V.
 B. The capacitor's voltage rating s times greater than the output volta a rating of at least 8V is appropria rating is recommended. Higher voltage electrolytic capacitit ESR numbers, and for this reason select a capacitor rated for a highe normally be needed. Catch Diode Selection (D1) A. The catch-diode current rating times greater than the maximum lo power supply design must withstat short, the diode should have a cur movinum ourput limit of the LMOS 	hould be at least 1.5 ge. For a 5V regulator, te, and a 10V or 15V ors generally have lower it may be necessary to er voltage than would must be at least 1.2 bad current. Also, if the nd a continuous output rent rating equal to the 26. The met streaged.	3.	Catch Diode Selection (D1) A. For this example, a 3A current rating is adequate. B. Use a 20V 1N5823 or SR302 Schottky diode, or any o the suggested fast-recovery diodes shown in <i>Figure 8</i> .
 condition for this diode is an overluc condition. B. The reverse voltage rating of th least 1.25 times the maximum input Input Capacitor (CIN) An aluminum or tantalum electroly located close to the regulator is ne operation. 	tic bypass capacitor eded for stable	4.	Input Capacitor (C _{IN}) A 100 mF, 25V aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing.

L	M2576 Series Buck Regulator Design	Procedure (Continued)
	PROCEDURE (Adjustable Output Voltage Versions)	EXAMPLE (Adjustable Output Voltage Versions)
Giv	en: $V_{OUT} \in \text{Regulated Output Voltage}$ $V_{IN}(Max) \in \text{Maximum Input Voltage}$ $I_{LOAD}(Max) \in \text{Maximum Load Current}$ $F \in \text{Switching Frequency}$ (<i>Fixed at 52 kHz</i>) Programming Output Voltage (<i>Selecting R1 and R2, as shown in Figure 2</i>) Use the following formula to select the appropriate resistor values. $V_{OUT} \in \text{VREF} \left(1 \approx \frac{R_2}{R_1}\right)$ where $\text{VREF} \in 1.23\text{V}$ R_1 can be between 1k and 5k. (<i>For best temperature coefficient and stability with time, use 1% metal film resistors</i>) $\frac{V_{OUT}}{R_2 \in R_1} \left(\frac{V_{OUT}}{V_{OUT}} = 1\right)$	Given: $V_{OUT} \in 10V$ $V_{IN}(Max) = 25V$ $I_{LOAD}(Max) = 3A$ $F = 52 \text{ kHz}$ 1. Programming Output Voltage (Selecting R1 and R2) $V_{OUT} \in 1.23 \left(1 \text{ a} \frac{R_2}{R_1}\right) \text{ Select } R1 \in 1k$ $\frac{V_{OUT}}{R_2 \in R_1} \left(\frac{V_{REF}}{V_{REF}} \text{ b} 1\right) \in 1k \left(\frac{10V}{1.23V} \text{ b} 1\right)$ $R_2 \in 1k (8.13 \text{ b} 1) \in 7.13k, \text{ closest } 1\% \text{ value is } 7.15k$
2.	Inductor Selection (L1) A. Calculate the inductor Volt • microsecond constant, E • T (V • ms), from the following formula: E • T e (V • ms), from the following formula: $E • T e (V • b V) \frac{V_{OUT}}{V_{IN}} e^{-\frac{1000}{(V • ms)}} (V • ms)$ $N = OUT V_{IN} F (in kHz)$ B. Use the $E • T$ value from the previous formula and match it with the $E • T$ number on the vertical axis of the Inductor Value Selection Guide shown in <i>Figure 7</i> . C. On the horizontal axis, select the maximum load current. D. Identify the inductance region intersected by the $E • T$ value and the maximum load current value, and note the inductor code for that region. E. Identify the inductor value from the inductor code, and select an appropriate inductor from the table shown in <i>Figure 9</i> . Part numbers are listed for three inductor manufacturers. The inductor chosen must be rated for operation at the LM2576 switching frequency (52 kHz) and for a current rating of $1.15 cmsc I_{LOAD}$. For additional inductor information, see the inductor section in the application hints section of this data sheet.	 Inductor Selection (L1) A. Calculate E • T (V • ms) E • T e (25 b 10) • 10 • 100 • 100 • 150 • 115 V • ms B. E • T e 115 V • ms C. I_{LOAD}(Max) e 3A D. Inductance Region e H150 E. Inductor Value e 150 mH Choose from AIE part #415-0936 Pulse Engineering part #PE-531115, or Renco part #RL2445.
3.	Output Capacitor Selection (C _{OUT}) A. The value of the output capacitor together with the inductor defines the dominate pole-pair of the switching regulator loop. For stable operation, the capacitor must satisfy the following requirement: $C_{OUT} \neq 13,300 \frac{V_{IN}(Max)}{V_{OUT} \cdot L(mH)} (mF)$ The above formula yields capacitor values between 10 mF and 2200 mF that will satisfy the loop requirements for stable operation. But to achieve an acceptable output ripple voltage, (approximately 1% of the output voltage) and transient response, the output capacitor may need to be several times larger than the above formula yields. B. The capacitor's voltage rating should be at last 1.5 times greater than the output voltage. For a 10V regulator, a rating of at least 15V or more is recommended. Higher voltage electrolytic capacitors generally have lower ESR numbers, and for this reason it may be necessary to select a capacitor rate for a higher voltage than would normally be needed.	 Output Capacitor Selection (C_{OUT}) A. C_{OUT} I 13,300 25 To • 150 € 22.2 mF However, for acceptable output ripple voltage select C_{OUT} t 680 mF C_{OUT} e 680 mF electrolytic capacitor

PROCE	DURE (Adju	stable Output Volta	ge Versions)	EXAMPLE (Adjustable Output Voltage Versions)			
Catch E A. The c times gr power s short, th maximu conditio See dioc B. The r least 1.2 Input Ca An alum located operatio	biode Selectic catch-diode cu eater than the upply design i e diode shoul m current limi n for this diod le selection gu everse voltag 5 times the m apacitor (CIN inum or tanta close to the re n.	on (D1) urrent rating must be e maximum load curr must withstand a cor Id have a current rati t of the LM2576. The e is an overload or s ide in <i>Figure 8</i> . e rating of the diode naximum input voltag) lum electrolytic bypa agulator is needed for	at least 1.2 ent. Also, if the ntinuous output ing equal to the e most stressful shorted output. should be at ge.	 Catch Diod A. For this e B. Use a 30 fast-recover Input Capa A 100 mF a and ground 	le Selection (D1) example, a 3.3A current ra V 31DQ03 Schottky diode ry diodes in <i>Figure 8</i> . citor (C _{IN}) luminum electrolytic capa pins provides sufficient by	ting is adequate. , or any of the suggeste citor located near the ing /passing.	
	S	Schottky	Fast	Recovery			
VR	3A	4A-6A	3A	4A-6A			
20V	1N5820 MBR320F SR302	1N5823					
30V	1N5821 MBR330 31DQ03 SR303	50WQ03 1N5824	The following	The follow	To further sin design proce ductor is ma all design softw	mplify the buck regulat dure, National Semico king available comput are to be used with th	
40V	1N5822 MBR340 31DQ04 SR304	MBR340 50WQ04 1N5825	diodes are all rated to 100V 31DF1	rated to 10 50WF10 MUR41	00V SIMPLE SWI regulators. S 0 (Version 3.3) 0 diskette for IF	ITCHER line of switchi Switchers Made Simp is available on a (31/3 M compatible compute	
50V	MBR350 31DQ05 SR305	50WQ05	HER302	HER602	2 from a Natio office in your	from a National Semiconductor sal office in your area.	
60V	MBR360 DQ06 SR306	50WR06 50SQ060					
			FIGURE 8. Di	iode Selection G	luide		
Indu Co	uctor ode	Inductor Value		Schott Note 1)	Pulse Eng. (Note 2)	Renco (Note 3)	
L4	7	47 mH	67	/1 26980	PE-53112	RL2442	
L6	8	68 mH	67	1 26990	PE-92114	RL2443	
L1(00	100 mH	67	1 27000	PE-92108	RL2444	
L150		150 mH	67	1 27010	PE-53113	RL1954	
L220		220 mH	67	1 27020	PE-52626	RL1953	
L330		330 mH	67	1 27030	PE-52627	RL1952	
L4	70	470 mH	67	1 27040	PE-53114	RL1951	
L6	80	680 mH	67	1 27050	PE-52629	RL1950	
H150		150 mH	67	1 27060	PE-53115	RL2445	
H220		220 mH	67	1 27070	PE-53116	RL2446	
H330		330 mH	67	1 27080	PE-53117	RL2447	
H470		470 mH	67	1 27090	PE-53118	RL1961	
H6	80	680 mH	67	1 27100	PE-53119	RL1960	
H1	000	1000 mH	67	71 27110	PE-53120	RL1959	
H1	500	1500 mH	67	1 27120	PE-53121	RL1958	
H2200		2200 mH	67	1 27130	PE-53122	RL2448	

s Incorporated, (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729. FIGURE 9. Inductor Selection by Manufacturer's Part Number

Application Hints

INPUT CAPACITOR (CIN)

To maintain stability, the regulator input pin must be bypassed with at least a 100 mF electrolytic capacitor. The capacitor's leads must be kept short, and located near the regulator.

If the operating temperature range includes temperatures below b25°C, the input capacitor value may need to be larger. With most electrolytic capacitors, the capacitance value decreases and the ESR increases with lower temperatures and age. Paralleling a ceramic or solid tantalum capacitor will increase the regulator stability at cold temperatures. For maximum capacitor operating lifetime, the capacitor's RMS ripple current rating should be greater than

$$\begin{array}{l} 1.2 \ c \ \left(\begin{array}{c} \frac{-\text{ON}}{\text{T}} \right)^{-c} \ I_{LOAD} \\ \text{where } \ \frac{\text{t_{ON}}}{\text{T}} \ c \ \frac{\text{V}_{OUT}}{\text{V}_{IN}} \text{ for a buck regulator} \\ \text{and } \ \frac{\text{t_{ON}}}{\text{T}} \ c \ \frac{|\text{V}_{OUT}|}{|\text{V}_{OUT}|} \ \text{a V_{IN}} \text{ for a buck-boost regulator.} \end{array}$$

INDUCTOR SELECTION

t

All switching regulators have two basic modes of operation: continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulator performance and requirements.

The LM2576 (or any of the SIMPLE SWITCHER family) can be used for both continuous and discontinuous modes of operation.

The inductor value selection guides in *Figure 3* through *Figure 7* were designed for buck regulator designs of the continuous inductor current type. When using inductor values shown in the inductor selection guide, the peak-to-peak inductor ripple current will be approximately 20% to 30% of the maximum DC current. With relatively heavy load currents, the circuit operates in the continuous mode (inductor current always flowing), but under light load conditions, the circuit will be forced to the discontinuous mode (inductor current falls to zero for a period of time). This discontinuous mode of operation is perfectly acceptable. For light loads (less than approximately 300 mA) it may be desirable to operate the regulator in the discontinuous mode, primarily because of the lower inductor values required for the discontinuous mode.

The selection guide chooses inductor values suitable for continuous mode operation, but if the inductor value chosen is prohibitively high, the designer should investigate the possibility of discontinuous operation. The computer design software *Switchers Made Simple* will provide all component values for discontinuous (as well as continuous) mode of operation.

Inductors are available in different styles such as pot core, toriod, E-frame, bobbin core, etc., as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin core type, consists of wire wrapped on a ferrite rod core. This type of construction makes for an inexpensive inductor, but since the magnetic flux is not completely contained within the core, it generates more electromagnetic interference (EMI). This EMI can cause problems in sensitive circuits, or can give incorrect scope readings because of induced voltages in the scope probe.

The inductors listed in the selection chart include ferrite pot core construction for AIE, powdered iron toroid for Pulse Engineering, and ferrite bobbin core for Renco.

An inductor should not be operated beyond its maximum rated current because it may saturate. When an inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This will cause the switch current to rise very rapidly. Different inductor types have different saturation characteristics, and this should be kept in mind when selecting an inductor.

The inductor manufacturer's data sheets include current and energy limits to avoid inductor saturation.

INDUCTOR RIPPLE CURRENT

When the switcher is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input voltage and output voltage, the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current rises or falls, the entire sawtooth current waveform also rises or falls. The average DC value of this waveform is equal to the DC load current (in the buck regulator configuration).

If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will change to a discontinuous mode of operation. This is a perfectly acceptable mode of operation. Any buck switching regulator (no matter how large the inductor value is) will be forced to run discontinuous if the load current is light enough.

OUTPUT CAPACITOR

An output capacitor is required to filter the output voltage and is needed for loop stability. The capacitor should be located near the LM2576 using short pc board traces. Standard aluminum electrolytics are usually adequate, but low ESR types are recommended for low output ripple voltage and good stability. The ESR of a capacitor depends on many factors, some which are: the value, the voltage rating, physical size and the type of construction. In general, low value or low voltage (less than 12V) electrolytic capacitors usually have higher ESR numbers.

The amount of output ripple voltage is primarily a function of the ESR (Equivalent Series Resistance) of the output capacitor and the amplitude of the inductor ripple current (DI_{IND}). See the section on inductor ripple current in Application Hints.

The lower capacitor values (220 mF-1000 mF) will allow typically 50 mV to 150 mV of output ripple voltage, while larger-value capacitors will reduce the ripple to approximately 20 mV to 50 mV.

Output Ripple Voltage e (DIIND) (ESR of COUT)

Application Hints (Continued)

To further reduce the output ripple voltage, several standard electrolytic capacitors may be paralleled, or a higher-grade capacitor may be used. Such capacitors are often called "high-frequency," "low-inductance," or "low-ESR." These will reduce the output ripple to 10 mV or 20 mV. However, when operating in the continuous mode, reducing the ESR below 0.03x can cause instability in the regulator.

Tantalum capacitors can have a very low ESR, and should be carefully evaluated if it is the only output capacitor. Because of their good low temperature characteristics, a tantalum can be used in parallel with aluminum electrolytics, with the tantalum making up 10% or 20% of the total capacitance.

The capacitor's ripple current rating at 52 kHz should be at least 50% higher than the peak-to-peak inductor ripple current.

CATCH DIODE

Buck regulators require a diode to provide a return path for the inductor current when the switch is off. This diode should be located close to the LM2576 using short leads and short printed circuit traces.

Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best efficiency, especially in low output voltage switching regulators (less than 5V). Fast-Recovery, High-Efficiency, or Ultra-Fast Recovery diodes are also suitable, but some types with an abrupt turnoff characteristic may cause instability and EMI problems. A fast-recovery diode with soft recovery characteristics is a better choice. Standard 60 Hz diodes (e.g., 1N4001 or 1N5400, etc.) are also not suitable. See *Figure 8* for Schottky and "soft" fast-recovery diode selection guide.

OUTPUT VOLTAGE RIPPLE AND TRANSIENTS

The output voltage of a switching power supply will contain a sawtooth ripple voltage at the switcher frequency, typically about 1% of the output voltage, and may also contain short voltage spikes at the peaks of the sawtooth waveform.

The output ripple voltage is due mainly to the inductor sawtooth ripple current multiplied by the ESR of the output capacitor. (See the inductor selection in the application hints.)

The voltage spikes are present because of the the fast switching action of the output switch, and the parasitic inductance of the output filter capacitor. To minimize these voltage spikes, special low inductance capacitors can be used, and their lead lengths must be kept short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes.

An additional small LC filter (20 mH & 100 mF) can be added to the output (as shown in *Figure 15*) to further reduce the amount of output ripple and transients. A 10 \circ reduction in output ripple voltage and transients is possible with this filter.

FEEDBACK CONNECTION

The LM2576 (fixed voltage versions) feedback pin must be wired to the output voltage point of the switching power supply. When using the adjustable version, physically locate both output voltage programming resistors near the LM2576 to avoid picking up unwanted noise. Avoid using resistors greater than 100 kx because of the increased chance of noise pickup.

ON/OFF INPUT

For normal operation, the $\overrightarrow{\text{ON}}$ /OFF pin should be grounded or driven with a low-level TTL voltage (typically below 1.6V). To put the regulator into standby mode, drive this pin with a high-level TTL or CMOS signal. The $\overrightarrow{\text{ON}}$ /OFF pin can be safely pulled up to $\overrightarrow{\text{aV}}$ /IN without a resistor in series with it. The $\overrightarrow{\text{ON}}$ /OFF pin should not be left open.

GROUNDING

To maintain output voltage stability, the power ground connections must be low-impedance (see *Figure 2*). For the 5lead TO-220 and TO-263 style package, both the tab and pin 3 are ground and either connection may be used, as they are both part of the same copper lead frame.

HEAT SINK/THERMAL CONSIDERATIONS

In many cases, only a small heat sink is required to keep the LM2576 junction temperature within the allowed operating range. For each application, to determine whether or not a heat sink will be required, the following must be identified:

- 1. Maximum ambient temperature (in the application).
- 2. Maximum regulator power dissipation (in application).
- Maximum allowed junction temperature (125°C for the LM2576). For a safe, conservative design, a temperature approximately 15°C cooler than the maximum temperatures should be selected.
- 4. LM2576 package thermal resistances iJA and iJC.

Total power dissipated by the LM2576 can be estimated as follows:

P_D e (V_{IN})(I_Q) a (V_O/V_{IN})(I_{LOAD})(V_{SAT})

where I_Q (quiescent current) and V_{SAT} can be found in the Characteristic Curves shown previously, V_{IN} is the applied minimum input voltage, V_O is the regulated output voltage, and I_{LOAD} is the load current. The dynamic losses during turn-on and turn-off are negligible if a Schottky type catch diode is used.

When no heat sink is used, the junction temperature rise can be determined by the following:

$DT_J \oplus (P_D)(i_{JA})$

To arrive at the actual operating junction temperature, add the junction temperature rise to the maximum ambient temperature.

TjeDTjaTA

If the actual operating junction temperature is greater than the selected safe operating junction temperature determined in step 3, then a heat sink is required.

When using a heat sink, the junction temperature rise can be determined by the following:

 $\mathsf{DT}_J \mathrel{\textbf{e}} (\mathsf{P}_D) \; (i_{JC} \mathrel{\textbf{a}} i_{interface} \mathrel{\textbf{a}} i_{Heat \; sink})$ The operating junction temperature will be:

Tje T_A a DTj

As above, if the actual operating junction temperature is greater than the selected safe operating junction temperature, then a larger heat sink is required (one that has a lower thermal resistance).

Included on the Switcher Made Simple design software is a more precise (non-linear) thermal model that can be used to determine junction temperature with different input-output parameters or different component values. It can also calculate the heat sink thermal resistance required to maintain the regulators junction temperature below the maximum operating temperature.

Additional Applications

INVERTING REGULATOR

Figure 10 shows a LM2576-12 in a buck-boost configuration to generate a negative 12V output from a positive input voltage. This circuit bootstraps the regulator's ground pin to the negative output voltage, then by grounding the feedback pin, the regulator senses the inverted output voltage and regulates it to b12V.

For an input voltage of 12V or more, the maximum available output current in this configuration is approximately 700 mA. At lighter loads, the minimum input voltage required drops to approximately 4.7V.

The switch currents in this buck-boost configuration are higher than in the standard buck-mode design, thus lowering the available output current. Also, the start-up input current of the buck-boost converter is higher than the standard buck-mode regulator, and this may overload an input power source with a current limit less than 5A. Using a delayed turn-on or an undervoltage lockout circuit (described in the next section) would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on.

Because of the structural differences between the buck and the buck-boost regulator topologies, the buck regulator design procedure section can not be used to to select the inductor or the output capacitor. The recommended range of inductor values for the buck-boost design is between 68 mH and 220 mH, and the output capacitor values must be larger than what is normally required for buck designs. Low input voltages or high output currents require a large value output capacitor (in the thousands of micro Farads).

The peak inductor current, which is the same as the peak switch current, can be calculated from the following formula:

$$I_{p} \approx \frac{I_{LOAD} \left(V_{IN} \mathbf{a} \left[V_{O} \right] \right)}{V_{IN}} \mathbf{a} \frac{V_{IN} \left[V_{O} \right]}{V_{IN} \mathbf{a} \left[V_{O} \right]} \mathbf{c} \frac{1}{2L_{1} f_{osc}}$$

Where $f_{osc} \, e \, 52$ kHz. Under normal continuous inductor current operating conditions, the minimum V_{IN} represents the worst case. Select an inductor that is rated for the peak current anticipated.

Also, the maximum voltage appearing across the regulator is the absolute sum of the input and output voltage. For a b_{12V} output, the maximum input voltage for the LM2576 is a28V, or a48V for the LM2576HV.

The *Switchers Made Simple* (version 3.0) design software can be used to determine the feasibility of regulator designs using different topologies, different input-output parameters, different components, etc.

NEGATIVE BOOST REGULATOR

Another variation on the buck-boost topology is the negative boost configuration. The circuit in *Figure 11* accepts an input voltage ranging from b5V to b12V and provides a regulated b12V output. Input voltages greater than b12V will cause the output to rise above b12V, but will not damage the regulator.

FIGURE 11. Negative Boost

Because of the boosting function of this type of regulator, the switch current is relatively high, especially at low input voltages. Output load current limitations are a result of the maximum current rating of the switch. Also, boost regulators can not provide current limiting load protection in the event of a shorted load, so some other means (such as a fuse) may be necessary.

UNDERVOLTAGE LOCKOUT

In some applications it is desirable to keep the regulator off until the input voltage reaches a certain threshold. An undervoltage lockout circuit which accomplishes this task is shown in *Figure 12*, while *Figure 13* shows the same circuit applied to a buck-boost configuration. These circuits keep the regulator off until the input voltage reaches a predetermined level.

Note: Complete circuit not shown.

FIGURE 12. Undervoltage Lockout for Buck Circuit

Definition of Terms

BUCK REGULATOR

A switching regulator topology in which a higher voltage is converted to a lower voltage. Also known as a step-down switching regulator.

BUCK-BOOST REGULATOR

A switching regulator topology in which a positive voltage is converted to a negative voltage without a transformer.

DUTY CYCLE (D)

for

Ratio of the output switch's on-time to the oscillator period.

buck regulator
$$D \in \frac{t_{ON}}{T} \in \frac{V_{OUT}}{V_{IN}}$$

for buck-boost regulator $D = \frac{t_{ON}}{T} = \frac{|V_O|}{|V_O|} = \frac{|V_O|}{|V_O|}$

CATCH DIODE OR CURRENT STEERING DIODE

The diode which provides a return path for the load current when the LM2576 switch is OFF.

EFFICIENCY (h)

The proportion of input power actually delivered to the load.

$$h e \frac{P_{OUT}}{P_{IN}} e \frac{P_{OUT}}{P_{OUT} a P_{LOSS}}$$

CAPACITOR EQUIVALENT SERIES RESISTANCE (ESR)

The purely resistive component of a real capacitor's impedance (see *Figure 16*). It causes power loss resulting in capacitor heating, which directly affects the capacitor's operating lifetime. When used as a switching regulator output filter, higher ESR values result in higher output ripple voltages.

Most standard aluminum electrolytic capacitors in the 100 mF-1000 mF range have 0.5X to 0.1X ESR. Higher-grade capacitors ("low-ESR", "high-frequency", or "low-inductance") in the 100 mF-1000 mF range generally have ESR of less than 0.15X.

EQUIVALENT SERIES INDUCTANCE (ESL)

The pure inductance component of a capacitor (see *Figure* 16). The amount of inductance is determined to a large extent on the capacitor's construction. In a buck regulator, this unwanted inductance causes voltage spikes to appear on the output.

OUTPUT RIPPLE VOLTAGE

The AC component of the switching regulator's output voltage. It is usually dominated by the output capacitor's ESR multiplied by the inductor's ripple current (DI_{IND}). The peak-to-peak value of this sawtooth ripple current can be determined by reading the Inductor Ripple Current section of the Application hints.

CAPACITOR RIPPLE CURRENT

RMS value of the maximum allowable alternating current at which a capacitor can be operated continuously at a specified temperature.

STANDBY QUIESCENT CURRENT (ISTBY)

Supply current required by the LM2576 when in the standby mode $(\overline{ON}/OFF$ pin is driven to TTL-high voltage, thus turning the output switch OFF).

INDUCTOR RIPPLE CURRENT (DIIND)

The peak-to-peak value of the inductor current waveform, typically a sawtooth waveform when the regulator is operating in the continuous mode (vs. discontinuous mode).

CONTINUOUS/DISCONTINUOUS MODE OPERATION

Relates to the inductor current. In the continuous mode, the inductor current is always flowing and never drops to zero, vs. the discontinuous mode, where the inductor current drops to zero for a period of time in the normal switching cycle.

INDUCTOR SATURATION

The condition which exists when an inductor cannot hold any more magnetic flux. When an inductor saturates, the inductor appears less inductive and the resistive component dominates. Inductor current is then limited only by the DC resistance of the wire and the available source current.

OPERATING VOLT MICROSECOND CONSTANT ($E \bullet T_{op}$) The product (in Volt•ms) of the voltage applied to the inductor and the time the voltage is applied. This $E \bullet T_{op}$ constant is a measure of the energy handling capability of an inductor and is dependent upon the type of core, the core area, the number of turns, and the duty cycle.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.