

گروه فنی مهندسی جوش و برش مقدم

اعتماد از شما کیفیت و تخصص از ما

09153223758

051-37581400

https://www.moghadamwelding

http://instagram.com/moghadam

https://t.me/moghadamwelding

https://whatsapp.com/channel

https://rubika.ir/moghadamwelding

مشهد خیام شمالی 63 خیابان پردیس 3

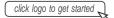
- 7 سال سابقه آموزش تعمیرات تخصصی دستگاه های جوش اینورتری تک فاز و 3 فاز
- 7 سال سابقه فروش قطعات الکترونیکی دستگاه جوش
 تک فاز و 3 فاز
- آموزش تخصصی تحلیل دستگاه های جوش اینورتری مختص ابراز فروشان
 - آموزش تخصصی ابراز آلات شارژی

BYV26A, BYV26B, BYV26C, BYV26D, BYV26E

www.vishaltra-Fast Avalanche Sinterglass Ditole Semiconductors

FEATURES

- Glass passivated junction
- Hermetically sealed package
- · Very low switching losses
- · Low reverse current
- · High reverse voltage
- Material categorization: for definitions of compliance please see


www.vishay.com/doc?99912

ROHS COMPLIANT HALOGEN FREE

DESIGN SUPPORT TOOLS

MECHANICAL DATA

Case: SOD-57

Terminals: plated axial leads, solderable per MIL-STD-750,

method 2026

Polarity: color band denotes cathode end

Mounting position: any **Weight:** approx. 369 mg

APPLICATIONS

- Switched mode power supplies
- High-frequency inverter circuits

ORDERING INFORMATION (Example)					
DEVICE NAME	ORDERING CODE	DDE TAPED UNITS MINIMUM ORDER QUANTITY			
BYV26E	BYV26E-TR	5000 per 10" tape and reel	25 000		
BYV26E	BYV26E-TAP	5000 per ammopack	25 000		

PARTS TABLE				
PART	TYPE DIFFERENTIATION	PACKAGE		
BYV26A	V _R = 200 V; I _{F(AV)} = 1 A	SOD-57		
BYV26B	V _R = 400 V; I _{F(AV)} = 1 A	SOD-57		
BYV26C	V _R = 600 V; I _{F(AV)} = 1 A	SOD-57		
BYV26D	V _R = 800 V; I _{F(AV)} = 1 A	SOD-57		
BYV26E	V _R = 1000 V; I _{F(AV)} = 1 A	SOD-57		

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT	
	See electrical characteristics	BYV26A	$V_R = V_{RRM}$	200	V	
		BYV26B	$V_R = V_{RRM}$	400	V	
Reverse voltage = repetitive peak reverse voltage		BYV26C	$V_R = V_{RRM}$	600	V	
voitage		BYV26D	$V_R = V_{RRM}$	800	V	
		BYV26E	$V_R = V_{RRM}$	1000	V	
Peak forward surge current	$t_p = 10$ ms, half sine wave		I_{FSM}	30	Α	
Average forward current			$I_{F(AV)}$	1	Α	
Non repetitive reverse avalanche energy	$I_{(BR)R} = 1$ A, inductive load		E _R	10	mJ	
Junction and storage temperature range			$T_j = T_{stg}$	-55 to +175	°C	

Vishay Semiconductors

MAXIMUM THERMAL RESISTANCE (Tamb = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Junction ambient	I = 10 mm, T _L = constant	R _{thJA}	45	K/W	

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	I _F = 1 A		V _F	-	-	2.5	V
	I _F = 1 A, T _j = 175 °C		V _F	-	-	1.3	V
Reverse current	$V_R = V_{RRM}$		${ m I}_{ m R}$	-	-	5	μA
	$V_R = V_{RRM}$, $T_j = 150$ °C		${ m I}_{ m R}$	-	-	100	μΑ
	I _R = 100 μA	BYV26A	$V_{(BR)R}$	300	-	-	V
		BYV26B	$V_{(BR)R}$	500	-	-	V
Reverse breakdown voltage		BYV26C	$V_{(BR)R}$	700	-	-	V
		BYV26D	$V_{(BR)R}$	900	-	-	V
		BYV26E	$V_{(BR)R}$	1100	-	-	V
Reverse recovery time	$I_{\textrm{F}}=0.5$ A, $I_{\textrm{R}}=1$ A, $i_{\textrm{R}}=0.25$ A	BYV26A	t _{rr}	-	-	30	ns
		BYV26B	t _{rr}	-	-	30	ns
		BYV26C	t _{rr}	-	-	30	ns
		BYV26D	t _{rr}	-	-	75	ns
		BYV26E	t _{rr}	-	-	75	ns

TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)

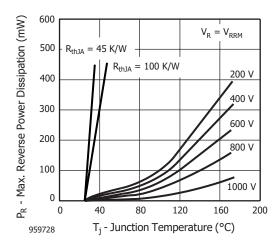


Fig. 1 - Max. Reverse Power Dissipation vs. Junction Temperature

Fig. 2 - Max. Reverse Current vs. Junction Temperature

www.vishay.com

Vishay Semiconductors

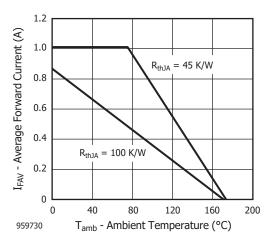


Fig. 3 - Max. Average Forward Current vs. Ambient Temperature

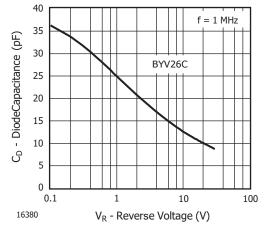


Fig. 5 - Diode Capacitance vs. Reverse Voltage

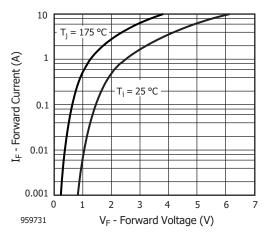


Fig. 4 - Max. Reverse Current vs. Junction Temperature

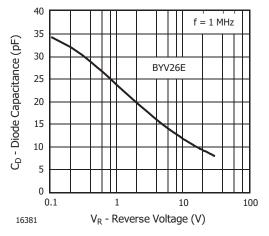
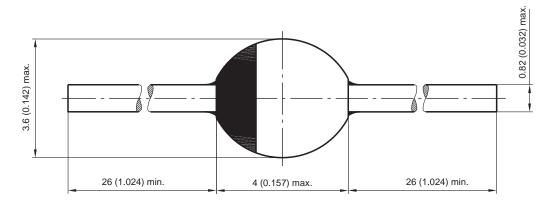



Fig. 6 - Diode Capacitance vs. Reverse Voltage

PACKAGE DIMENSIONS in millimeters (inches): SOD-57

20543 Rev. 3 - Date: 09.February 2005 Document no.:6.563-5006.3-4

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED